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Let Co (rp) denote all polynomials of degree n majorized by a positive C 2 function
rp on [ - I, I], n = 0, I, 2, .... We establish that for every r E (0, I), there is an integer
N(r,rp»O, such that, for all n:;:,N(r,rp), the polynomials in Co(<p) could be as
large as rp on [- r, r], i.e.,

max IPo(x)1 = <pIx),
PilE C I1 (<p)

for all x E [ ~r, r] and n:;:, N(r, rp). This is related to a result of Newman and
Rivlin [6]. 1';.• 1994 Academic Press. Inc.

1. INTRODUCTION

Let cp(x) > 0 on (-1, 1). Define

where ~, denotes the set of polynomials of degree at most n. Following
Rahman (cf. [8]), such PnECn(CP) is called a polynomial with curved
majorant cp. Tunin raised the question about the size of Ip~(x)1 for Pn in
Cn(cp) when cp(x)=(1-X2

)1/2, Estimation has been made (cL [7-9]), but
the "precise value" is still not known for all x. In this article, instead of the
size of Ip~(x)l, we are concerned with the size of IPn(x)1 when PnECn(CP).
Naturally,

IPn(x)1 ~ cp(x), -1<x<1.

The question is whether the equality is always possible and if not, at
what points the equality holds. This is closely related to the weighted
approximation.
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Our results are inspired by a paper of Newman and Rivlin [6 J, in which
they answered the above question when <p(x) = (1 - x 2

) ± 1/2.

This paper is organized as follows. The statements of our results are
given in Section 2. Their proofs appear in Section 3.

2. STATEMENTS OF RESULTS

Our first result shows that on subintervals [- r, rJ (0 < r < 1), some
polynomials with curved majorant <p can be as large as <p provided that
their degrees are high enough (n ~ N(r, <p)). More precisely, we have the
following.

PROPOSITION 1. Assume <p > 0 and q/' is continuous in (- I, 1). Then for
every r E (0, 1), there exists an integer N = N(r, <p) > 0 depending on rand <p
only, such that

max Ip(x)1 = <p(x),
pEC,rff.{J)

( I )

.If)r all x E [ - r, rJ and n ~ N.

Remark I. From a result of Ivanov and Totik [1, Example 1], one can
see that for certain function <p, Eq. (1) may fail for small n.

Remark 2. When limlxl~l- <p(x) = +00, we must have lim'~I- N=
+X. We prove this fact at the end of Section 3.

To state our next result, we need some preparations. Assume function
<p: [ -I, I] -l> (0, + wJ is continuous (including the situations in which
either lim<~ I <p(x) = + x, or lim<~ }+ <p(x) = + X,, or both). Then it is
well known (cf. [5]) that there exists (smallest) interval [s(n), t(n)] ~
[ - 1, 1] such that

I
P(X)! IP(X)!Ilpll",:= sup -- = max --

<E(-Ll) <p(x) XE[.,(III.t(ll11 <p(x)

for all p E?J'", with

and

t(n)< 1

s(n) > -1

iff lim <p(x) = + CIJ,
x~ 1-

iff lim <p(x) = + 00.
\" - I ~
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Note that {Xk/<p(X)Z~o is a Chebychev system over [s(n), t(n)]. Thus,
there exists (uniquely) the so-called weighted Chebychev polynomial of
degree n (with respect to <p ), Tn. 'I' (x) = x n+ '" E ~, characterized by

By Chebychev's maximal equioscillation theorem, there are points ~k>

k= I, 2, "., n+ 1, such that

and

k = 1, 2, ..., n + 1.

A set of points like {~k}Z: \ will be called a set of points of equioscillation
of Tn, 'I' (x )/<p(x). Generally, such a set of points of equioscillation is not
unique. Denote

and

where the "sup" and "inC' are taken over all sets of points of equioscillation
with ~n+l and ~I being the smallest and largest points, respectively. We
write ~n + 1(~d for ~n + 1(n) (resp. ~1 (n)) when there is no confusion. A com
pactness argument yields that there are {~k}Z~l and {~dZ:; such that
both {~dZ:\ and {~dZ:\ form sets of points of equioscillation of
Tn, <p(x)/<p(x). So the "sup" and "inC' in the definitions of tn+ 1 and ~l can
be replaced by "max" and "min", respectively.

Define Tn,<p(x):=Tn.<p(x)/IITn,<pll<p, then ITn.<p(x)l~tp(x), -I <x<l;
so Tn. <p E Cn(<p). Our n~xt re~ult says that Tn, 'I' has the largest absolute
value outside interval (~n+l' ~d among all polynomials in Cn(cp)·

PROPOSITION 2. Assume that function cp: [ - 1, 1] --> (0, +x] is con
tinuous. Then for x E (- 00, tn+ I] U [~1' + (0),

max Ip(x)1 = ITn, <p(x)l. (2)
pEC,(<p)

Remark 3. When <p(x) = (1 + x 2 )± 1/2, Eq. (2) was proved by Newman
and Rivlin in [6]. When <p(x)=(l-x)-'(l+x)-fJ with Q:,f3~0, it was
established by Lachance et al. in [2]. Both proofs in these two articles
employed the Lagrange's interpolation formula. It turns out that the same
approach works for the general case with proper modifications. For
completeness, we give a sketch of the proof of Proposition 2 in the next
section.
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As a consequence of Propositions I and 2, we can say something about
the smallest and the largest extreme points of the weighted Chebychev
polynomial Tn, /p(X)!lp(X),

PROPOSITION 3, Assume function lp: [ -I, I] -+ (0, + 00] is continuous,
and assume lp" is continuous on (-1, 1). Then

lim ~l(n)=1
n~ co

and lim ~n+ dn) = -1.
n -+ CfJ

Remark 4, This proposition should be compared with a result of
Lubinsky and SafT (cr. [4, p, 58, Corollary 8.2]). There, in the case of
lp(x) = eQ(x) defined on the whole real line with lp" continuous, under the
additional condition that lp' is positive in (0, 00), the order of the largest
extreme point of the weighted Chebychev polynomial was estimated.

We now state the main result, which is the consequence of the combina
tion of the above three technical propositions.

THEOREM. Assume function lp: [ - I, I] -+ (0, + 00 ] is continuous, and
assume lp" is continuous on ( - I, I). Let r E (0, I) be given. Then there exists
an integer N' = N'(r, lp) > 0 such that, for b ~ N', we have

~n+l < -r,

and

{
lp(X ),

max Ip(x)1 = ~
PEC.(/p) ITn,/p(x)l,

if XE[-r,r],

if XE(-oo, ~n+l]U[~l' +(0).

The above theorem makes one wonder what happens to

max Ip(x)1
pE C.(/p)

for x E (~n + I' - 1') U (r, ~d (n ~ N ' ). More generally, the following question
is of interest.

Question. For a given integer n ~ 0, what is the subset of [ -1, 1] of the
points at which maxpE C.(/p) jp(x)j = lp(x)? And on the remaining part of
[-1,1], what are the values maxpEdlp) Ip(x)1 and the polynomials
yielding the maximum values?

For a special family of functions lp, this question has been solved in [3 J
The general case is unsolved.
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3. PROOFS

97

Our proof of Proposition 1 involves, for every a E [ - r, r], the construc
tion of a polynomial Pa E Cn(tp) (when n is large enough) such that

Pa(a) = tp(a).

The classical Chebyshev polynomial Tn(x) = cos(n arccos x), which is the
fastest increasing polynomial outside [ -1, 1], plays a very important role
in our construction. The following lemma lists some of the properties of Tn'
which are used in our proof.

LEMMA 1. For Ixl > 1, we have the following statements.

(i) Tn(x)=H(x+y0=t)n+(x-y0=ttJ

(ii) T~(x)= (n12 p=1)[(x +y0=tr - (x - y0=trJ.
(iii) T~'(x) = (nI2(x 2 - 1)3/2)[(X +y0=tr (n y0=t - x)

+ (x - y0=tt (n y0=t + x)].

(iv) Both n2Tn(x)IT~'(x) and nT~(x)IT~'(x) converge locally
uniformly in (- 00, -1) u (1, + 00).

Proof (i) is well-known, and it actually holds for all x E (- 00, + 00)

for a suitable choice of the branch of the square root. (ii)-(iv) are obtained
by straightforward computations. I

Let r E (0, 1) be given. For c5 E (0, 1 - r), define

and

Then f maps [ -1, 1]
maxb,,; Ixl"; 1 Iqn(x)j = 1, and
(n --+ + 00).

Note that, using Lemma 1,

onto [(2 + c5 2)/(4 - c5 2), (4 + c5 2)/(4 - c5 2)],
min 1xl ";bj.fi. qn(x) = T[nI2](4/(4 - c5 2)) --+ + 00
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(
<5 ) ( 4 ) 8<5

2

q;; )2 =T["i2] 4-152 (4_15 2)2

for n large enough. If we denote

I (4) 4
T["i2] 4-152 4_152>0,

m a := min cp(x)
x E [- ,. - (), r + 6 ]

and m2 := min{O, mm cp"(x)},
x E [ -- r - b. r + b]

then ma> °and m 2 ~ 0, and we can find N, = N, (r, <5, cp) such that

q;;(O) m2--<
q,,(O) m a

and

for every n ~ N\.
Now, for every n ~ N" choose x" E (0, <5/)2) such that

'{ ( <5) q~(x) m 2 }x" :=mm XE 0')2 : q,,(O) = ma .

Then q~(x)<q~(xlI)~Ofor Ixi <x" and n~N"

Our next lemma reveals some asymptotic properties of XII'

LEMMA 2, We have the following limit relations:

lim ~~ XII = }2<5,
11 -. + 'x

lim qll(xJ =_1_,
IH +x qll(O) ;;

and

Proof We first show

lim X/I=O.
fl_ +:x

(3)

(4)

(5 )

(6)

Assume e E [0, <5/)2] is a limit point of {XII k" lv', <;; [0, <5/j2]; then there
exists A <;; {n }/I '" iV, such that

lim X/I = e.
n_ +ClJ

/lEA
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From the definition of X n , we can write
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Note that m 2~ 0, mo > 0, T[n/2J (f(0)) > 0 and Tl'n/2J(f(xn)) > 0, for 12 large
enough. So the second term on the right side of (7) is non-positive; thus

for 12 large enough. From Lemma I, it can be verified that

(8)

Thus, by letting 12 --+ + 00 and 12 E A in (8), we get

(
41: )2

4-<5 2 ~O,

or

41:
4-15 2 =0.

So e=O. Consequently, Eq. (6) holds. Using this fact in (9), we obtain

( 10)

Now, multiplying (8) by 12 and letting 12--+ + '00 yield lim sUPn~ + x 12X;' ~
2<5. Together with Lemma 1, this implies

Therefore, lim sUPn ~ + oc 12 T[ni2] (f(0) )/T[ni2] (f(xn)) ~ O. But T[n/2] (f(0))/
Tl'n/2] (f(xn)) > 0, so

lim n T[n/2J(f(O)) =0.
n~ +oc T'rn/2J(f(xn))

(11 )
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When we multiply n on both sides of (7) and let n -+ + 00, using (10) and
( 11), we can get

. ( 4xn )2 32<5
II~~CC n 4-<5 2 =(4_<52)2'

which is equivalent to (3).
For the proof of (4), write

qll(Xn) = T[II/2]«4+J2_2x~)/(4-J2»

qn(O) T[n/2]«(4 + (5
2 )/(4 - ()2»

[
«J4 - x~ + J 1J2 - x~)2/(4 _1J 2 »[1I/2] + «4 - <5 2 )/(J4 - X~J

+J <5 2 - X~)2 )[n/2]

«2 + 1J )/(2 - (5» [11/2] + «2 - <5 )/(2 + 1J» [11/2]

So

lim qn(xn) = 1 .
II_+CC qn(O) limll_+cc«2+<5)/(J4-x~+J<52-x~»2[n/2]

Using (3), we find

(
2 + b )2[11/2]

lim =j;'
n_+:o J4-X~+J1J2_x~ ,

thus

which is (4).
The proof of (5) is very similar to that of (4). We have

(12)

lim _1_ q~(xn) = __1_ 1
n-+:o~ qn(O) J2blimn_+:o«2+1J)/(J4-x~+J1J2-x~)2[n/2]

1
= - j2&'

by (12). I
Proof of Proposition 1. In addition to all the notations introduced

above, we also need the following quantities:

M:= max cp(x)
x E [ - r - Ii, r + Ii]

and M' := max Icp'(x)l.
x E [ - r - Ii. r + Ii]
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Recall that mo := XE [-r-b,r+b) cp(x). Since limb~O+ mo= min lxl ~r cp(x) > 0,
we can choose b = b(r, cp) E (0, 1 - r) so small that

~>2M'. (13)
b~

Then we choose N 2 = N 2 (r, cp) >°such that

(14 )

(15 )

(16 )

and

M
qn(O) + M'xn~ mo,

for every n;:: N 2' The existence of such N 2 is guaranteed by (5), (4) and
(13), and (3). From (4) and (5), we can again find N 3 =N3 (r, cp»O so
large that

(17)

for every n;:: N3'

We now show that N = N(r, cp) := max(N1 , N 2 , N 3 ) is the N described in
Proposition 1.

For n;:: N, define

For each aE [-r, r], define

then A. E [molM, 1]. Now choose bE [a - X n , a + x n ] such that

).p~(b - a) = cp'(a).

Such number b exists because Ap~(X) is an odd function and
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by (14). If cp'(a)~O, then b~a; and if cp'(a»O, then b<a. We only need
to consider the case when cp'(a)~O; the case when cp'(a»O can be
deduced either directly by using similar argument or from transformation
x -> -x.

Construct p,,(x) as follows:

p,,(x) := l[pl/(x + h - 2a) + M - pl/(h - a)].

We have

p,,(a) = AM = cp(a)

and

p;,(a) = ).p;,(h - a) = cp'(a).

We claim that

p"ECI/(cp). (18 )

We divide the proof of claim (18) into three cases according to the
location of XE (-1,1).

Case 1. Ix + h - 2al ~ XII"

In this case, we have XE [-r-fJ, r+fJ], Ip,,(x)1 =P,,(.\:), and for some
( satisfying I( + b - 2a1 ~ XI/'

Ip,,(x)1 = p,,(x) = cp(x) +Pa(;\:) - cp(x)

= cp(x) + ~ (p;; (() - cp"(O)(x - a)2

1 (AMm 2 ) 1~cp(X)+- ---m2 (x-a)-
2 ma

1 (moMm 2 ) 2
~CP(X)+-2 m 2 (x-a) =cp(x),

Mmo

where we have used the facts that m 2 ~ 0 and

Case 2. xl/< jx+h-2al ~fJ.

In this case, we still have Ip,,(x)1 =P,,(x). Assume to the contrary of (18)
that for some x' satisfying XI/ - b + 2a < x' ~ fJ - h + 2a,

p,,(x') ~ cp(x').
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Then there is 'E (X n - b + 2a, x') such that
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Since (17) implies that the graph of Pa over the interval [xn - b + 2a,
15 - b + 2aJ is always below the segment connecting points (XII - h + 2a,
pJxll -h+2a» and (l5-h+2a, p)l5-b+2a», we see that

pJx' ) - p)xn - b + 2a) Pa(i5 - b + 2a) - pJx,,- h + 2a)
I ~ •

x -x,,+h-2a l5-x"

Hence

q/(O ~ Pa(15 - b + 2a) - pJxll - b + 2a) ;.M(l - qn(.xn»

l5-x" ql/(O)(I5-xn)

m o(1 - q,,(xl/»
~ <-M',

qn(O)(b - XII)

according to (15). But the definition of M ' gives 1<p'(OI ~ M ', so we get a
contradiction. Similarly, one can show that there is no x" satisfying
- () - h + 2a ~ X" < - XI/ - h + 2a such that

Pa(X") ~ <p(x").

So, in Case 2, we always have

Case 3. () - h + 2a ~ x < I or - I < x ~ - () - b + 2a.

We have Ix+b-2al~b and

I -A IMql/(x + h - 2a) Mqn(b -a)1
pJx)1 - (0) + M - (0)qll ql/

;,M
= qn(O) Iqll(x+h-2a)-q;,«()(h-a)/ «(E(O, h-a»

).M I.M
~-(O)+-(O)!q;,(b-a)1 XI/ (lq;,(OI ~ Iq;,(b-a)l)

qn q"

<p(a) 1'( I M M '=-(0)+ <p a) XI/~-(O)+ xl/~mo·
q" qn

Here in the last step we have used (16). So IPa (.x) I~ m o~ <p(x) in this case.
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The above three cases cover all points x in (- 1, 1); hence we have
\p,,(.X")\";; cp(x) for all XE (-1,1), which is equivalent to claim (18). This
completes our proof of Proposition 1. I

Proof of Proposition 2. Let -I ";;~n+l <~,,< ... <~I";; 1 be a set of
points of equioscillation of T",'!'(x)!cp(x). Define w(x) :=rrz-:~ (x-~d.

Then, for pEC,,(cp), Lagrange's interpolation formula yields

So

,,+ I Ip(~k)1 n+ 1 CP(~k)

[p(x)1 ,,;; Iw(x)[ L I"(~ )( _ ~ )1";; Iw(x)1 L I "(~ )( _ Y )J' (19)
k ~ 1 H k X k k = I H k X C;k

But IW'(~k)I=(-l)k+lW'(~d and Tn,,,,(~d=(-l)k+lcp(~k)' for
k=I,2, ... ,n+1. Thus, the right side of (19) equals ITn, ",(x)1 when
X¢[(n+l,(l]. Now substituting gdZ~\ by {~k}Z~\ and {~d~~\, we
obtain (2) for x¢ [~n+ I' ~I]. I

Proof of Proposition 3. If there is an infinite set A <:; {n} n ~ 1 such that

nEA, (20)

then for nEA and n~N(ro, cp), with N(ro, cp) as defined in Proposition 1,

max Ip(x)1 = cp(x),
pEe Cnl"')

by Proposition 1. But Proposition 2 gives

max Ip(x)1 = Tn, ",(x),
pE Cnl"')

It then follows from (20) that

cp(x) = T".,p(x),

for all n with n E A and n ~ N(ro, cp). So

Tn, ",(x) = Tm.",(x),

for all m,nEA and m,n~N(ro,cp). Thus T".",(x)=T",,<p(x), for all
m, n E A and m, n ~ N(ro, cp), which is impossible when m #- n. I
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Proof of Remark 2. Without loss of generality, we can assume N(r, cp)
is non-decreasing in r. If limlxl~'-cp(x)=+OCJ, and limr~,-N(r,cp)¥

+ 00, then, on the one hand, we must have

ITn, ",(x)1 < cp(x), (21 )

for Ixl close enough to I; on the other hand, there is a positive K such that

N(r, cp)~K, (22)

for all rE(O, I).
From (21), we see that ~1(n)<1 and ~n+l(n»-I, and thus, by

Proposition 2,

max Ip(x)1 = ITn.",(x)l,
pE c.(",)

for r(n) := max{ I~l (n), I~n + 1(n)/ } ~ Ixl. But (22) and Proposition 1 would
imply

max Ip(x)1 = cp(x),
pE e.(",)

for every n ~ K. Hence

X E (-1, 1),

r(n) ~ Ixl < I,

for every n ~ K, which implies particularly

TK, ",(x) = t K+ I, ",(x),

which is impossible. I

max {r( K), r( K + 1)}~ x < I,
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